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Physical phenomena taking place at the surface of a spherical granule in con- 
tact with a cryogenic fluid are analyzed, A boundary condition of third kind 
is obtained. Perturbation method is used to construct a solution of the Stefan 
problem for bodies possessing spherical symmetry. 

Solutions of order higher than the first, show a singularity at the center of 
the sphere. A modified perturbation method is used to obtain an asymptotic 

Solution removing this singularity. The analytic solution is compared with the 
experimental results and numerical solutions. 

l. Model of the process of granule formation. 

Formation of granules in cryogenic fluids is of great practical importance. For exam- 
ple, one of the stages of the cryogenic synthesis of inorganic compounds involves rap- 
id freezing of the starting solutions into spherical particles. The main purpose of 
the freezing is to achieve chemical homogeneity, and rapid transition of the solution 

from the liquid to the solid state prevents its constituents from separating. Although 

the methods used to obtain the particles are relatively simple [l - 31, the theoretical 
problems arising in connection with the freezing process have not been studied in suf- 
ficient detail, 

Let us consider the mechanism of heat transfer at the boundary between a spherical 
body and a cryogenic fluid. When a drop of the solution impinges on the surface of 

the cryogenic fluid, the latter boils up. The vapour formed maintains the drop for 

some time in a state of suspension, the drop rotating about its center and moving over 

the surface of the cryogenic fluid, The behavior of the drop is due to the instability 

of the flow of vapour within the gap. The thickness of the vapour layer diminishes 
with time, and a moment comes when the particle becomes immersed in the fluid. 
This corresponds to a change in the character of the process of boiling ofthecryogenic 

fluid. Heat conductivity and radiative transfer across the vapour layer separating the 
drop from the cryogenic fluid provide, in this case, the heat exchange mechanism 

between the drop surface and the cryogenic fluid. Analogous situation arises when a 

drop reacts with a solid surface heated to a temperature exceeding the Leyden frost 

point [4], The temperature difference between the solid surface and the evaporating 
drop remains constant. In the present case the temperature difference and the COT- 

responding heat exchange coefficient both vary along the drop surface. 
We assume that the flow of vapor in the gap is laminar and, that the vertical 

component of the velocity of the vapor is small compared with the horizontal com- 

ponent, Let us suppose that the thickness of the vapor layer is constant over the 
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whole surface of the sphere. The effective surface heat transfer coefficient a is 
connected with the vapor layer thickness S by the relation cc = h” i 6 where h” 

is the heat conductivity coefficient of the cryogenic fluid vapor. 

The vapor layer thickness 6 is obtained from the equation of motion of a viscous 
incompressible vapor (Navier - Stokes equation) and the equation of continuity, 
under the condition that the drop is supported on the surface of the fluid by viscous 
friction of the vapor evolved, Under these assumptions the equation of conservation 

of vapor impulses and the condition of equilibrium, have the form (equation of con- 

tinuity is satisfied identically) 

P*a2u / ag = ap J ar, 0 .-< :i < S (1.8 
l-l 

9/T (t, R) --To] h” = ‘) ’ 
L&p” 

‘” 
s 

J-U hi 
0 

Here u” and p” denote, respectively, the dynamic viscosity coefficient and the den- 

sity of the vapor, L is the heat of the phase change of the cryogenic fluid, p and 
u are the pressure and horizontal component of the vapor velocity, ~(t, R) and 
T, are the surface temperature of the drop of radius R and of the cryogenic fluid, 

and t is time. 

Integrating the equation (1.1) under the boundary conditions u = 0 when y = 
0 and g = 6 , gives the vapor velocity field within the gap 

u = Y (3 - 6) (2 P*)-r (ap / af-1 (X.2) 
The pressure difference in the vapor layer is obtained from (1.2) and the second rela- 
tion of (1. l), with the condition that AR = PO t where p. is the vapor pressure 

at the drop surface, taken into account, in the form 

P - Po =I_ 3 [T (t, R) - T,] h”y” (Rz - r2) / (6”Lp”) 

The total force of pressure acting on the drop is given by 

p = 34 nR4 [T (1, R) - 2,2 h”p” ! (6*&f) 

since this force is balanced by the gravity of the drop, the boundary condition at the 
drop surface will be 

Bi [e (t, 1)] = b I’ [I - 8 (t, I)]“” (1.3) 

Bi = aR / h,, 6 (t, 1) == [I”, - 2’ (t, l)] i (To -- Fe) 
bP -= S/9 Y3 Lp’p,gR 3 / [ho4 (To - T,) pnl 

where p0 is the density of the solution, 6 is acceleration due to gravity, To is 
the solution temperature and Bi in the Biot number. 

From (1.3) it follows that when 0 (t, 1) -g 1, then the drop will be supported on 
the surface of the cryogenic fluid by the friction of the vapor evolved irrespective of 
the radius of the drop. In fact, this is not observed. When the size of the drop and 
the solution density reach a certain value (for water drops frozen in liquid nitrogen, 
R =: 9.5 + 10 mm ), the drops become immersed in the volume of the fluid almost 
instantly. This can apparently be explained by the fact that when the drop size or 
the solution density reach a certain value, then the mecha~sm of the vapor flow 
changes. The velocity of the vapor in the gap and the area of contact between the 
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drop and the cryogenic fluid increase with Increasing radius, while (1.3) implies that 
the thickness of the vapor layer increases at the same time only insignificantly. The 
dependence of the thickness of the vapor layer on 0 (1, 1) is shown in Fig. 1 where 
the curves l-4 correspond to the particle radii of 0.1, 0.2, 0.3 and 0.5 mm. 

Under these conditions waves appear within the gap at the surface of the cryogenic 
fluid, and their amplitudes may be of the order of thickness of the vapor layer. A 
contact component of the heat flux appears, which may exceed, in the case of lam- 
inar boiling,the heat flux itself. When the fluid is in microcontact with the granule 
surface, the boiling is explosive and leads to an increase in the number of microcont- 
acts as well as in the frequency of their appearance, With the process developing in 

this manner, the weight of the drop exceed the vertical component of the frictional 
forces uniformly acting from the direction of the vapor layer, and the drop becomes 
immersed in the bulk of the fluid. 

Another phenomenon has come to light 

in the course of experiments carried out with 

freezing of the drops. It was found that drops 
of a certain, specified radius (which we shall 
call critical) shattered explosively some time 

after freezing. The critical radius could be 

smaller (of the order of 1 mm. for pure 
water [5]), or larger (for solutions of salts 
TsTS, TsTSL and TsTBS-1) than the radius 
of the drop at which it sinks. 

One of the assumptions explaining the 
the mechanism of disintegration of the gran- 
ules asserts that the freezing process is ac - 
companied by increase in the volume of 
the fluid enclosed in the frozen shell [6]. Fig. 1 

Other investigators [7] have shown that shattering of a granule is caused by a large 

amount of dissolved gas and large temperature gradients. In [8] and below it was 

shown that the disintegration of the particles is caused by the difference in the physi- 
cal and rheological properties of the liquid and solid phases, and the conditions of 

freezing. Quantitative description of this process is outside the scope of this paper, 
and we shall consider here the granules of size at which no disintegration takes place. 

2. Formulation of the problem and ita 8olution. 
Assuming that the thermophysical properties of the solid phase are independent of 

temperature and, that the temperature of the liquid phase is equal to the phase transi- 

tion temperature, we can write the energy equation and boundary conditions in the 

form 
~w~v/~S=Pvl~X~(z~>0,O~X<h) (2.1) 
z”=O, v=bih; ?“O, X=h, ii’v/aX=v 
~~>O,X=S,v=bfh 
X = S, w = - hS-’ (au / ax),=, (2.2) 
e = c, (T, - TJ / L,, v = Bq -/- b / h, w = dS / d+‘, h = 1 - 314 b 
z” = ch2z, z = a,t / P, X = hq, S = hql, q = r ! R, qI = E (T) ! R 
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Here r denotes the running radius, E (T) is the radial position of the freezing front, 

Ca is the heat capacity of the solid phase , L, is the heat of phase transition of 
the initial solution, a0 is the heat conductivity coefficient of the solution, and the 
second boundary condition is obtained by expanding (1 - 0)“/4 into a binomial series 

with 044. The condition (2.2) represents the Stefan condition at the moving 
boundary. 

We solve the problems of this type using the method of perturbing the regular para- 
meter, first used in solving the first Stefan boundary problem in [9]. The method is 
used in [lo] to fix the moving boundary with the help of the Landau transformation. 
The applicability of the solutions obtained by this method is limited by the existence 
of a singularity. The singularity which appears when the phase transition front approa- 

ches the center of the sphere, is removed in [9] with help of the Euler and Shanks 
transformations [IA] using the method of deformed coordinates. Solutions obtained 
by means of these transformations yield results suitable for practical applications. 

We seek the solution of the problem in the form of a power series in parameter E 

Y = 5 EnY,; Y = v, w, To 
n=o 

(2.3) 

From (2.1) - (2.3) we have the following problem for the i-th term of the expansion: 

i = 0, aaVi I ax2 = 0 
i (2.4) 

i > 1, PVi I ax2 = C Wj_laVi_j I as 
j=l 

i > 0, X = h, au, 1 aX = vi; i = 0, X = S, vi = b / h 
t> 1, X = S, Vi = 0; X = S; Wi = - hs-l(av, I ax),=, 

Solutions of the system (2.4) with the accuracy of up to and including the second 

order terms have the form 
V / v. = i + ES-V, + &WVz 
w / w. = 1 + es-lD, + e2F3Dz 

u,=by/(hz),w,=-b//z@-l+h)l 

(+~(-++~+ 
1 

cz = 
--(4z+3h-3)(Y-z)[ 

O/z4 

(2.5) 

The zero order approximation for the temperature distribution represents a quasistation- 

ary solution. The time of freezing is found from (2.4) in the form 

- b-’ (1 - rll) 1112 (1 - h) (1 + rll) + i/3 h (1 + ql + ~71 
:I = - 113 h+ [l/2 (1 - W) - hW’ (1 - Q)] 
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Fig. 2 depicts the dependence of the position of the freezing front on the freezing 
time for E = 0.1 and 0.5, and the curves o-z correspond to the zero, first 
and second order approximations. 

Fig. 2 

Solution (2.5) obtained by the perturbation method diverges when the phase tran- 
sition front approaches the center of the sphere, We remove this singularity by using, 
instead of the three-term expansion (2.5), a nonlinear Shanks transformation [Xl] 
which, for the time of freezing, has the form 

Z, = [z,t, - e (GJ% - rr21J i 01 - srsf 

Analogous expression holds for the temperature V, as well, Dashed line in Fig. 2 
shows the dependence nr (t*) for & = 0.1. The singularity of the solution at 
the sphere center is removed, but the time of complete freezing of the sphere given 
by the last formula is equal to the time of freezing in the zero approximation, i, e. 
the method yields unsatisfactory results when it comes to determining the time of 
complete freezing. More accurate results are obtained by applying the Euler trans- 
formations to the series (2.5). Let us introduce the variable 5 = rl i (Ir: + rlf 
where n = t i S. We write the series (2.5) in the form of expansions in powers 

of 5 

v!v,= 1 +-KCIec+ KE(&+ KC& c2+ (2.6) 

Ke (C, + 2 KC@ + K2C& c3 -k . . . 
wi w. = 1 + KD,E(~ + Q g+ Ke(D, + K2D,@ F+ .-. 

Here K = K (E) is a parameter obtained from the equation of total energy balance 
from the start to the comp~e~on of the freezing process 

f (hb'v/aX s --+$-blh)X,,h 
w 

h h 
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Hz0 

- 

I iO% TsTSL 
II 

R.103, m 0.5 1.0 1.5 
b 0.35 0.59 0.85 
h 0.74 0.56 0.36 

KI 0.14 0.52 1.14 
Kz 0.07 0.26 0.56 
Tl 0.2 0.68 1.01 

2.5 z2 
1.25 El” 
0.07 t,, s 
5.13 I 

3.68 II 

3.73 III 

- 
Hz0 

O-2 0.69 
0.87 0.82 
0.05 0.23 
0.25 0.91 
5.3 12.5 
4.63 11.76 

rcl”‘, TsTSL 

3.82 
0.8 
2.7 
6.43 

20.5 
19.4 

The values of K, and K, relative to the granule radius and the values of the para- 
meter b , are given in the above table. The sets I, II and III give the values of the 
theoretical (I) and experimental (II) time for which the particle floats, and (III) gives 

the same theoretical time for the case when 6 = 0’. TheTdble shows that the 
parameter K decreases with increasing number of terms of the series, and this speaks 
in favor of the suitability of the expansions (2.6) in the n -th order approximation, 

using the approximations of the same order in 5. For example, in the first order 
approximation the time of freezing is determined by the formula 

111 

s no (I+ K&Id drll 
Et1 = - 

b [I + K&I -l/s bK+ (i- @-3)J ,, 

Fig.3 depicts the dependence of the position of the freezing front on time, in the 
first order approximation. The curves l-4 correspond to the values R = 0.3,0.5, 
0.8 and 1.0 mm. respectively. 

Fig. 3 Fig. 4 

3, Comparison with the numerical results and 
e x p e r i m e n t a 1 d a t a. The analytic solution obtained was compared with 

the results of a numerical computation [12]. Fig.4 shows the results of that com- 
parison, The dependence of rll on the time of freezing is shown by solid lines 

l-4 for F = 0,0.5,1 and 2 respectively. The empty dots correspond to the 



Granule fh~atfon in cryogcnfc &if& 1037 

numerical faults of [J.2]. The numerical results diverge from the approximate solu- 
tions with the increasing value of the parameter e. Thus the method of perturbing 
the regular parameter using the Euler transformation yields fully satisfactory results 
up to the value of e = 1.5. 

The results obtained were compared with the experimental data. It should be 
noted that since it is difficult to measure directly the time of complete freezing of 
the granule we measured the time for which the granule floated on the surface of 
the fluid. This time includes the time of complete freezing and cooling of the sur- 
face of the granule to the temperature 80, which is the critical boiling temperature 
of the cryogenic fluid of second kind. The temperature difference 0” is found from 

the experimental data [13]. The value of 9” was also obtained from the solution of 
the problem of cooling the granule 

a0 I a,c = 8% / a?ls (T > 0, 0 < Tl< 1) 
z = 0, e = -a/.$ [f (?I) - b / hl = y (rl) 
z>0,~=1,aeia~=hhe;z>O,rl=O,8=0 
ty (,,) = jy (il -t_ hq)3 + E (d + hq) + f;, rE = I - h, fi = Ke2 i (6 hs) 
F = K&b2 / (3 hd3) - b / h, E = b [I - :I3 K&b (‘/z - p3)l / (hd) 

The solution of this problem has the form [14] 

Here fin denotes the n-th positive root of the equation fi ctg j3 - h = 0. Know- 
ing the temperature difference we can find the time of cooling. Combining the time 

of complete freezing and time of cooling, we compare the result with the experiment- 
al data given in Table. We see that the time of floating of the granule on the surface 
of liquid nitrogen determined experimentally exceeds, as a rule, substantially the 
time to at which the boiling of second kind becomes critical. 

Line (II) of the Table gives the theoretical time t of floating of the granule cal- 
culated under the assumption that the dimensionless temperature difference 8’ be- 
tween the surfaces of the granule and the liquid is equal to 0.01. The time is in 

satisfactory agreement with the experimental values. 
The increase in the actual time of floating can be explained by the fact that vap- 

or bubbles form at the surface and maintained by surface tension forces. The growth 
of the bubbles and their subsequent detachment from the surface is accompanied by a 

sharp change in the motion of the granule. Large granules (R > 2 mm) execute, 

in this case, a shuttling motion along the height of the vessel. 
Thus the results obtained and their comparison with the experimental data enable 

us to conclude that 1) the time of freezing is much shorter than the time spent by 

the granule floating on the surface of nitrogem2) the heat transfer coefficient remains 
practically constant during the time of freezing; 3) the time of floating of the gran- 
ule is of the same order as the time taken to cool the granule surface to the temp- 

erature of liquid nitrogen. 
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